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Abstract. We discuss results from two types of real space remormalization group (RSRG)
calculations applied o the random fieid Ising model in three dimensions. Starting from a lattice
of size L, the RSRG is used to reduce the lattice to a size L = 2, on which the trace is done
exactly. In this way, thermodynamic properties, such as the magnetization and susceptibility,
can be determined approximately, We find that, for a given size, the susceptibility increases as
the temperature, T, is reduced down to the transition temperature, T, and becomes essentially
independent of temperature below T, Both in the vicinity of T, and at lower temperatures, there
are large sample-to-sample fluctuations in the suscepfibility which grow with increasing system
size. We interpret these results in terms of the droplet theory of the transition.

1. Introduction

The random field Ising model (REIM) has been extensively studied, both theoretically and
experimentally [1, 2]. While there is general agreement that a phase transition to an ordered
state occurs in three dimensions [3], the naturé of the transition is poorly understood. For
example, it is not definitely established whether the transition is second order or first order
with large fluctuations. Assuming that the transition is second order, the values of the
critical exponents are not known with any precision, and estimates from experiment and
numerical work appear to be inconsistent.

Difficulties in the theory stem from the RFIM being a frustrated system whlch has a
complicated (free) energy landscape with more than one inequivalent minimum. A scaling
(dropiet) theory based on this picture has been developed by Villain [4] and Fisher [5] (see
also Bray and Moore [6]). According to these ideas, a system of size L at T = T; is
most likely to have just one minimum which is thermally populated, but there is a small
probability, of order £=%, that there is a second minimum whose (total) free energy is within
of order kgT of the lowest minimum. Here 6(> 0) is a critical exponent. When there are
two degenerate minima the susceptibility is greatly enhanced, as we will see in section 2.
We also expect a similar pichure to hold below T, but now 9, rather than being a non-trivial
critical exponent, should be equal to d/2 as also shown in section 2.

In this paper we calculate the susceptibility and other quantities of the RFIM using real
space renormalization group (RSRG) methods. We find that the susceptibility has large
sample-to-sample fluctuations of the form predicted by the droplet theory both at and below
T.. However, the values of § at and below T, are indistinguishable within the accuracy of
the calculation, which indicates that the transition is close to first order.
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2. The model and some of its properties

The Hamiltonian is given by

N
H==Y J,58 — Y hS: (1)
1

S i=

where the interactions, J; ;, are between nearest neighbours on a simple cubic lattice with
N = L3 sites, the Ising spins, S;, take values £1, and the fields, #;, are chosen to have zero
mean and standard deviation equal to /4,.. We are interested in the susceptibility x, which
is related to spin comrelation functions by the standard expression

1 N
= 577 35 = S5 @

where {---) denotes a thermal average. Another qﬁantity of interest will be the
‘disconnected’ susceptibility, defined by

| X
Xds = 55 !(Si)(sj)- 3

ij=

We now discuss the sample-to-sample fluctuations in the susceptibility at 7;. According
to the droplet theory [4, 5] most samples have only one thermally populated minimum. For
these samples, the two terms in equation (2) almost cancel. More precisely, while each
term separately has the divergence of yg;., i.e.

Xes~ L7 (T =Ty @
the difference is given by
x~L¥  (T=T)  (prob.~1). )

Here,  and 7 are critical exponents and, according to the droplet theory, @ is related to
them by

6=2-7+. ' ()

The Schwartz—Soffer inequality [7], when applied to a finite system, predicts [x (L)l <
B Y [xais(L)]av}' /%, where [-- ],y denotes an average over random field configurations.
Therefore, the cancellation of the most divergent terms in the susceptibility is rigorously
true on average.

The droplet theory also predicts that there is a probability ~ L~ that a sample has more
than one minimum which is thermally populated and, for these samples, the two terms in
equation (2) do not cancel, but the difference is of the same order as each term, i.e.

x~ L (T=T)  (prob.~L™). )

Hence there is a very small probability that the susceptibility is much larger than the typical
value. On increasing the lattice size, the probability of obtaining one of these rare samples
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decreases but the susceptibility of a tare sample, relative to a typical value, gets larger.
Averaging over samples, and using equations (5) and (7), one sees that for the first moment,

[x1av, both the typical and rare samples give a comparable contribution,
[ ]

[X)av ~ L (T=T) - : 8)
but highér moments are dominated.by the rare samples, so, for example,
[l ~ L5F7 (T=T) -9

which is much larger than [x13,. At T, then, x is highly non-self-averaging. Nonetheless,
we expect that y will be self-averaging sufficiently far above T, that £ <« L, where §
is the correlation length, because, in this case, the system can be divided into essentially
independent regions of size # and any measurement on the whole sample will be an average
over these regions.

Aliernatively, one can discuss the distribution of y rather than its moments. This is
expected to be very broad, with a most probable value of order L277 and a tail extending
out to values of order L*~7. We shall see that these features of the distribution and its
moments are reproduced by the RSRG calculations described in the next two sections. Note
that all samples give a value for yg;; of order JL“"J as’in equation (4}, so this is also true
for the average value, i.e. .

Eaisle ~ L7 (T =T.). ' A ¢ 1)

In the ordered phase, we expect that the behaviour of x and yg will be of the form
given in equations (4), (5) and (7), for T =T, but with values for the exponents which
can be determined from elementary considerations as follows. Below T, there is long-range
order 80 xuis ~ L%, i.e. j =4 —d (=1 for d = 3). It is reasonable to expect that, at low
temperatures, the differences in the free energies of the minima should be of order £9/2
(where d is the dimension: 4 = 3 here), since this is the difference in free energy between
the state with all spins up and the state with-all spins down. (To see this note that the
sum of the random fields in a sample is of order the square root of the number of sites.)
Assuming a constant density of states for the free energy difference (as in the theory of
Fisher [5] for the situation at T) this gives a probability of order L~9/2 that the two lowest
minima differ in free energy by less than 47 and so 8 = d/2. Finally, following Fisher
[5] we assume that the whole curve of the free energy against magnetization scales with
size as LY, so the susceptibility, which is related to the curvature at the minima, varies as

~ L2/2 and hence 5 = (4 — d) /2 The exponents for T < 7., i.e.

n=05"" _ﬁ=1.0 §=15 an

(in d = 3) should also be valid g7 T. if the transition is first order, because, in this case, the
system is already ordered at 7. Note that when equation (11} is valid, the Schwartz-Soffer
7] ineq_uality,

N2

MI—

7 (12)

is satisfied as an equality.
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3. Casher—Schwariz approximation

In this section and the next section, we apply two approximate RSRG transformations, the
Casher—Schwartz (CS) approximation [8] and the Migdal-Kadanoff (MK) approximation
[9, 10] to the RFIS. Both procedures generate correlations among the renormalized coupling
constants, Usually, such correlations are neglected, although, as demonstrated for the
random bond system, it may be appropriate to take the correlations into account as
contributions to an effective renormalized variance [11]. Here we do not neglect these
correlations but rather start from a finite lattice of linear size L, which must be a power of
2,ie. L = 2", with a given realization of the random fields. We use the two RSRG methods
to reduce the size of the lattice to L = 2, for which the trace can be done exactly. This
approach has the advantage that all correlations are kept, but has the disadvantage that only
a finite number of iterations, » — 1, can be performed. In the more conventional approach, in
which one makes additional approximations such as neglect of correlations, one can iterate
an arbitrary number of times.

The Cs method considered in this section is only slightly more complicated to implement
than the MK method to be considered in the next section. Its advantages are that the generated
couplings remain symmetric in all space dimensions and that the critical exponents obtained
for the pure system are in better agreement with the exact values for the pure systems. A
detailed description of the method can be found in [8] so here we just give a short account
of it. We start from a cubic lattice with periodic boundary conditions and divide it into
two sublattices, such that all the neighbouss of a site are on the other sublattice. Summing
over the spins one of the sub-lattices the result is a spin Hamiltonian on a BCC lattice,
which contains single-site (random field) terms, two spin couplings and higher odd and
even multi-spin interactions, The muiti-spin interactions are neglected, and some of the
two-spin interactions are replaced by other two-spin interactions in such a way that the
small momentum form of the original pure Hamiltonian and the new pure effective one,
are identical. Summation over the body centre spins can be done exactly. The result is a
simple cubic system that is brought, by applying the above method again, to its original
form, i.e. a nearest-neighbour interaction and a random field.

We consider the case that comesponds to the experimental situation, where the
interactions and random fields are kept fixed and only the temperature is varied. We
therefore set J;; =-1 in equation (1) and choose a realization of the random field with
h = 1.

We calculate the configurational average of the susceptibility by going through the
following steps: '

(i) A fixed uniform field is added to a given realization of the random field,

(ii) We apply the number of renormalization steps needed to reduce the size of the
system to L = 2. :

(iif} The space average magnetization of the remaining spins is calculated exactly.

(iv) The configuration average is then performed by repeating the previous steps for
many random field configurations. For 2 finite system the average must be zero for 2 =0
because of the basic reflection symmetry of the system. To preserve this symmetry, when
cnly a finite number of configurations is used in the average, we also include the mirror
image of each random field realization.

(v) The average susceptibility {x]av is

] ‘
Xl = "a_};[M(h)]av o (13
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bat, since [M (0)],y = 0, we actually calculate

[M(k)]av ) 7 7 ) ) (14)

[X]x_w = fl;l_rf:) A
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Figure 1. A plot of the average susceptibility against temperature for sizes between L = 4 and
L = 64 using the ¢s approximation with #, = 1 and the nearest-neighbour interaction given by
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Figure 2. A plot of R(L) = [x (2L, T)av/{x (L, T)]as for various sizes and temperatures using
the ¢S approximation.

A word of caution is in place here conceming the numerical derivative at & = 0. We
must choose # small enough so that [M (#)] is linear in 4. The difficulty is that, below the
transition, the size of the region shrinks to zero when the size of the system tends to infinity,
but for & too small we encounter numerical problems from round off errors. Fortunately,
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Figure 3. Scaling plot for the average susceptilibity, as discussed in the text, for the ¢s
approximation, The exponent values are 5 = 0.53 and v = 1.36, and the transition temperature
is taken to be T; = 3.85.
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Figure 4. The average susceptibility as a function of L on a log-log plot for different
temperatures for the MK approximation with &, /T = 0.5 and the nearest-neighbour interactions
in the different directions given by J; =2J, =4J; with J, =1.

we were able to meet both requirements, except possibly for the the data below T for the
largest size considered, L = 64 (see the comments below on figure 3).

The susceptibility is presented in figure 1 for different sizes as a function of
temperature. In the low-temperature regime we see that, excluding L = 4, the ratio
R(L) = [x(ZL, T)]av/[x(L, T)]a is almost temperature independent, as shown in figure 2.
Furthermore, for large L, R also becomes almost L independent, which implies that [x]ay
varies with a power of L. Fitting to equation (8) we find » /& 0.53 with about 10% accuracy,
which is close to the value n = 0.5 expected at a first-order transition, see equation (11).
To obtain the other critical exponents we use the finite-size scaling form

[X(L, oy = LR (LT — T2)) (15)
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Figure 5. The mean square susceptibility as a function of L on a log-log plot for different
temperatures for the MK approximation.
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Figure 6. The disconnected susceptibility as a function of L or a log-log plot for different
temperatures for the MK approximation. .

where v is the exponeént which describes the divergence of the correlation length with
temperature. The susceptibility exponent, y is then given by y = (2 — #)v. We guess a
value for y; set 5 = (.53, and determine v from v = /{2 — 5). Next we estimate the
best T, for this ¥ by requiring that the data for the susceptibility of the largest systems a
little above T (where finite-size effects should be unimportant) are of the form (T —T)™7.
With these parameter values, we plot [x (L, T)]s/L*™" as a function of LY*(T —T¢). This
procedure is repeated for several values of ¥ until we get the best data collapse, Using the
sizes L = 16, 32 and 64 we found that the best fit is obtained for y = 1.9-2.2. Within
that range it is impossible to prefer one value over another. The fit for y = 2 is shown in
figure 3. The results for the L = 64 system are a little low at low temperatures, probably -
because the value of / used for the numerical differentiation was too big (see the comments
above on difficulties in choosing the right value of &). However, the critical exponents are
determined from the data-above T, where the different graphs coincide.
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Figure 7. The ratio, A,, as defined in the text, for various sizes, L = 2741 for the Mi
approximation, The curves are expected to intersect at Tz.

We can also estimate the specific heat exponent, «, from the scaling law ¢ +284-y =2
where £ is the order parameter exponent. In the next section we find that g ~ 0, consistent
with results of Ogielski [12], so, using the above value of y, one finds that ¢ is very small,
or even negative. As a self-consistency check, we have also calcnlated the average energy
associated with the random field {in the absence of an external uniform field). This is done
by the same decimation procedure as before. The difference is that instead of calculating
the space average of {S;) over the spins in the L = 2 lattice, we calculate & = 3 A:{S;)
summed over those spins. Note that #; is the original field, since the renormalization scheme
is just a way of calculating the thermal average of the spin (S;). We expect that the part of
the energy associated with the random field scales in the same way as the total energy. The
temperature derivative of £ is very noisy but shows no tendency to diverge at T;. This is
consistent with the above estimate for « obtained from scaling laws, and, given the noise
in the data, it may also be consistent with the experimental result [13] showing a weak
logarithmic divergence, ¢ = 0.

4. Migdal-Kadanoff approximation

We now discuss our second approximation, due to Migdal and Kadanoff (MK). This is a very
simple method, which has, nonetheless, been quite successful when appiied to frustrated
systems. For example, the MK method was the first to give the (apparently correct) result that
there is a transition in the three-dimensional Ising spin glass but not in the two-dimensional
spin glass [14, 15]. The repeated MK transformation enables us to keep track of the spin-
independent term in the Hamiltonian at each stage, so we can compute the free energy
and hence its derivatives such as the magnetization and the susceptibility., Since the spin-
independent term is evaluated analytically we can evaluate y directly at 4 == 0, where % is
a uniform field, without needing to take a finite difference of the magnetization at two field
values, as was necessary for the CS approximation in the previous section.

The MK method has been extensively discussed elsewhere [9, 10] so we will not go into
details here, Basically one moves bonds around so that the trace can be done over spins
which are connected to only two neighbours. We use a scale factor of b = 2 so that the
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size of the lattice is reduced by a factor of 2 each time. The method does not mix the
" bonds in the different directions and, in fact, treats the bonds in the x, y and z directions
inequivalenily. As a result, the pure system (i.e. without random fields) has different fixed-
point equations for the x, y and z bonds. In order that one obtains a fixed point at the
same temperature for the bonds in each direction, one must choose the bonds in different
directions to have different values in the original Hamiltonian, namely J, =2J, = 4J,.

For the pure system, this ratio is maintained by the transformation, We also adopt this
choice of bonds in the initial Hamiltonian for the random field case, and work in units where
Jy = 1. In this section the ratio &, /T is kept constant, which corresponds to working on
a line at a fixed angle through the origin in the AT plane. We use the value &,/ T = 0.5.
Note that in the previous section, it was h,/J (with J = 1) that was kept constant.

In applying the bond-moving MK scheme to systems with fields one also needs to decide
how much of the field on a site is moved, if a bond attached to that site is moved. In order to
recover the correct low-temperature behaviour, it is necessary to associate an equal fraction
of the field with each of the bonds from the site, and move that part of the field along with
the bond [16]. ’

In figures 4-6 results for [xlav, [¥%lav and [xdisJav are shown plotted against L on a
double logarithmic scale for different temperatures. At high temperatures, there is curvature
in the data indicating that the resuits will saturate for larger sizes. For ternperatures at and
below about 4.2, we see power-law behaviour, with an exponent which does not change
significantly at lower temperatures. It is therefore difficult to distinguish the low-temperature
region from the critical region.

We attempted to determine the location of the critical point by looking at how K, =
([h?1sy) /27 J varies with n, the number of iterations. Here J = (0.5[/,] + [J;] + 2[J:1)/3.
where [J,] is the average value of the nearest-neighbour interaction in the x direction,
averaged over both sites and field configurations. We calculated this ratio, both for the
original Hamiltonian on a lattice of size L and in the lattice rescaled down to a linear size
of 2. Dividing the latter guantity by the former, we get A, = K,/K; for a number of
iterations equal to » = log,(L} — 1. In the disordered phase, the effective coupling A, goes
“to zero with increasing r, while at the critical point, the coupling goes to a fixed point value,
so A, becomes independent of n. In the ordered phase, A, is expected to diverge. Hence
the critical point can be located by looking for the intersection of curves of A against T for
different sizes. We plot this ratio in figure 7. Unfortunately, the curves do not intersect at a
single point; rather the intersection of neighbouring values of » occurs at somewhat higher
temperatures as # increases. Presumably one would need to do larger sizes to determine T
precisely. However, from figure 7 it appears that 7. cannot be much less than about 4.2
and, from the data for in figures 4-6, T, cannot be much greater than this since the data start
to show curvature. Hence we estimate T, =~ 4.2. Our conclusions are not very sensitive to
the precise value of T.

From the slopes of the curves for [x]ay and [xas)av at T = 4.2 we find n = 0.56 and
7 = 1.0. As a consistency check on the droplet picture we use equation (9) to determine the
expected exponent for-[x2],, obtaining 4.44. The actual value, obtained from figure 5, is
4.43, which is in excellent agreement. This shows that the RSRG approximation confirms the
droplet picture. Note that 7 = 1.0 gives 8 = 0, using the scaling law 8 = (d — 4 + if)v/2.
The best estimate for 8 so far is probably that of Ogielski [12], who found 8 ~ 0.1, which
~ 15 also close to zero.

Histograms of the values of y at T = 4.2 for L =32 and 16 are shown in figures 8
and 9. The results show the expected behaviour of a peak at rather small values of x and a
long tail (notice the horizontal scale is logarithmic), extending to much larger values. The
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Figure 8. Histogram of the susceptibilities of 10000 samples for L = 32, T = 4.2 for the MK
approximation. Note the fong tail in the distribution.
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Figure 9. Histogram of the susceptibilities of 10000 samples for L = 16, T' = 4.2 for the MK
approximation. Note the long tail in the distribution. '

the tail is seen to be longer for the larger size, as expected.

From our results we are unable to detect, within the accuracy of the data and the
limitations of the finite sizes, any difference between the exponents at and below T.. This
indicates that the transition is close to first order as discussed in section 2.

5. Conclusions

We have applied two RSRG approximations to study the susceptibility of the random field
Ising model. We find that there are large sample-to-sample fluctuations of the form predicted
by the droplet model. The exponents describing these fluctuations at and below T, are

indistinguishable within the accuracy of the calculation, which suggests that the transition
is close to first order.
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