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Abstract. We discuss results from two typg of real space renormalization gmup (FSRO) 
calculations applied to the random field king model in Uuee dimensions. Staning from a lattice 
of  size^ L, the RSRG is used to reduce the lattice to a size L = 2, on which the ha- is done 
exactly. In this way, thermodynamic properties, such as the magnetization and susceptibility. 
can be determined approximately. We find that, for a given size, the susceptibility increases as 
the temperature. T, is reduced down to the transition temperature. T,, and becomes essentially 
independent of temperature below T,. Both in the vicinity of T, and at lower temperatures, there 
are large sample-&sample fluctuations in the susceptibility which grow with increasing system 
size. We interpret these results in terms of the droplet theory of the m i t i o n .  

~' 

1. Introduction 

The random field king model (RNM) has been extensively studied, both theoretically and 
experimentally [l, 21. While there is general agreement that a phase transition to an ordered 
state occurs in three dimensions [3], the natur6 of the transition is poorly understood. For 
example, it is not definitely established whether the transition is second order or first order 
with large fluctuations. Assuming that the transition is second order, the values of the 
critical exponents are not known with any precision, and estimates from experiment and 
numerical work appear to be inconsistent. 

Difficulties in the theory stem from the RHM being a frustrated system which has a 
complicated (free) energy landscape with more than~one inequivalent minimum. A scaling 
(droplet) theory based on this picture has been developed by Villain [4] and Fisher [5] (see 
also Bray and Moore [6]). According to these ideas, a system of size L at T = T, is 
most likely to have just one minimum which is thermally populated, but there is a. small 
probability, qf order L-', that there is a second minimum whose (total) free energy is withim 
of order kBT of the lowest minimum. Here e(> 0) is a critical exponent. When there are 
two degenerate minima the susceptibility is greatly enhanced, as we will see.in section 2. 
We also expect a similar picture~to hold below Tc, but now 8 ,  rather than being a non-trivial 
critical exponent, should be  equal^ to d / 2  as also shown in section~2.' 

In this paper we calculate the~susceptibility and other quantities of the RFIM using real 
space renormalization group (RSRG) methods. We find that the susceptibility has large 
sample-to-sample fluctuations of the form predicted by the droplet theory both at and below 
T,. However, the values of 0 at and below T, are indistinguishable within the accuracy of 
the calculation, which indicates that the transition is close to first order. 
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2. The model and snme of its properties 

The Hamiltonian is given by 

where the interactions, J ~ J ,  are between nearest neighbours on a simple cubic lattice with 
N = L3 sites, the king spins, Si, take values f l ,  and the fields, hi, are chosen to have zero 
mean and standard deviation equal to h,. We are interested in the susceptibility x. which 
is related to spin correlation functions by the standard expression 

where (...) denotes a thermal average. Another quantity of interest will be the 
'disconnected' susceptibility, defined by 

We now discuss the sampleto-sample fluCNaIiOIIS in the susceptibility at Tc. According 
to the droplet theory [4, SI most samples have only one thermally populated minimum. For 
these samples, the two terms in equation (2) ahnost cancel. More precisely, while each 
term separately has the divergence of xdis ,  i.e. 

xdis - (T = Tc) (4) 

the difference is given by 

x - Lz-' (T = T,) (prob. - 1). (5) 

Here, q and 5 are critical exponents and, according to the droplet theory, 6 is related to 
them by 

e = 2 - 6 + ~ q .  (6) 

The Schwartz-Soffer inequality 171, when applied to a finite system, predicts [x(L)laV 6 
h;'{[xdis(I!,)]a~]~'~, where [. . .I, denotes an average over random field configurations. 
Therefore, the cancellation of the most divergent terms in the susceptibility is rigorously 
true on average. 

The droplet theory also predicts that there is a probability - L-O that a sample has more 
than one minimum which is thermally populated and, for these samples, the hvo'terms in 
equation (2) do not cancel, but the difference is of the same order as each term, i.e. 

(T = T,) (prob. - L-'). (7) N rp-i 

Hence there is a very small probability that the susceptibility is much larger than the typical 
value. On increasing the lattice size, the probability of obtaining one of these rare samples 
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decreases but the susceptibility of a rare sample, relative to a typical value, gets larger. 
Averaging over samples, and using equations (5 )  and (7), one sees that for the first moment, 
Ixlav, both the typical and rare samples give a comparable contribution, 

[XI," - L2-q (T Tc) (8) 

but higher moments are dominated by the rare samples, so, for example, 

[x21,".- L6-i-s (T = Z) (9) 

which is much larger than [XI&. At T,, then, x is highly non-self-averaging. Nonetheless, 
we expect that x will be self-averaging sufficiently far above T, that 6 << L, where 6 
is the correlation length, because, in this case, the system can be divided into essentially 
independent regions of size 6 and &y measurement on the whole sample will be an average 
over these regions. 

Altematively, one can discuss the distribution of x rather than its moments. This is 
expected to be very broad, with a most probable value of order L2-'J and a tail extending 
out to values of order L4-i .  We shall see that these features of the distribution and its 
moments are reproduced by the RSRG calculations described in the next two sections. Note 
that all samples give a value for xds of order L4-*,  as^ in equation (4), so this is also true 
for the average value, i.e. 

~~ 
~~ 

kdis lav  - L4-~ (T = TJ. (10) 

In the ordered phase, we expect that the behaviour of ,y and xais yill be of the form 
given in equations (4). ( 5 )  and (7). for :T F- T ,  but with values for the exponents which 
can be determined from elementary considerations as follows. Below T, there is long-range 
order so xdiS - L d ,  i.e. i j  = 4 - d ~ ( =  1 for d = 3). It is reasonable to expect that, at low 
temperatures, the differences in the free energies of the minima should be of order LdI2 
(where d is the dimension: d = 3 here), since this is the difference.in free energy between 
the state with all spins up and the s y e  with~all spins down. (To see this note that the 
sum of the random fields in a sample is of order the square root of the number of sites.) 
Assuming a constant density of states for the free energy difference (as in the theory of 
Fisher [5] for the situation @ T,) this gives a probability of order L-dlz that the two lowest 
minima differ in free energy by less than kBT'and so B = d/2. Finally, following Fisher 
[51 we assume that the whole curve of the free energy against magnetization scales with 
size as LO, so the susceptibility, which is related to the curvature at the minima varies as 
x - LdJ2, and hence 11 = (4 - d) /2 .  The exponents for T < Tc, i.e. 

V = O . ~ V  ~i j= i .o  e = i s  (11) 

(in d = 3) should also be valid at T, if the transition is first order, because, in this case, the 
system is already ordered at Tc. Note that when equation ,(11) is valid, the SchwartzSoffer 
[7] inequality, 

11 2 $i (12) 

is satisfied as an equality. 
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3. Casher-Schwartz approximation 

In this section and the next section, we apply two approximate RSRG transformations, the 
Casher-SchWar&z (CS) approximation [SI and the Migdal-Kadanoff (MK) approximation 
[9,10] to the RFIS. Both procedures generate correlations among the renormalized coupling 
constants. Usually, such correlations are neglected, although, as demonstrated for the 
random bond system, it may be appropriate to take the correlations into account as 
contributions to an effective renormal<zed variance'[ll]. Here we do not neglect these 
correlations but rather start from afrnite lattice of linear size L, which must be a power of 
2, i.e. L = 2", with a given realization of the random fields. We use the two RSRG methods 
to reduce the size of the lattice to L = 2, for which the tnce can be done exactly. This 
approach has the advantage that all correlations are kept, but has the disadvantage that only 
a finite number of iterations, n - 1, can be performed. In the more conventional approach, in 
which one makes additional approximations such as neglect of correlations, one can iterate 
an arbitrary number of times. 

The Cs method considered in this section is only slightly more complicated to implement 
than the MK method to be considered in the next section. Its advantages are that the generated 
couplings remain symmetric in all space dimensions and that the critical exponents obtained 
for the pure system are in better agreement with the exact values for the pure systems. A 
detailed description of the method can be found in [SI so here we just give a short account 
of it. We start from a cubic lattice with periodic boundary conditions and divide it into 
two sublattices, such that all the neighbours of a site are on the other sublattice. Summing 
over the spins one of the sub-lattices the result is a spin Hamiltonian on a BCC lattice, 
which contains single-site (random field) terms, two spin couplings and higher odd and 
even multi-spin interactions. The multi-spin interactions are neglected, and some of the 
two-spin interactions are replaced by other two-spin interactions in such a way that the 
small momentum form of the original pure Hamiltonian and the new pure effective one, 
are identical. Summation over the body cenae spins can be done exactly, The result is a 
simple cubic system that is brought, by applying the above method again, to its original 
form, i.e. a nearest-neighbour interaction and a random field. 
' 

We consider the case that corresponds to the experimental situation, where the 
interactions and random fields are kept fixed and only the temperature is'-varied. We 
therefore set Ji.j =- 1 in equation (1) and choose a realization of the random field with 
h, = 1. 

We calculate the configurational average of the susceptibility by going through the 
following steps: 

(i) A fixed uniform field is added to a given realization of the random field. 
(ii) We apply the number of renormalization steps needed to reduce the size of the 

(iii) The space average magnetization of the remaining spins is calculated exactly. 
(iv) The configuration average is then performed by repeating the previous steps for 

many random field configurations. For a finite system the average must be zero for h = 0 
because of the basic reflection symmetry of the system. To preserve this symmetry, when 
only a finite number of configurations is used in the average, we also include the mirror 
image of each random field realization. 

system to L = 2. 

(v) The average susceptibility [X I ,  is 
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but, since [M(O)], = 0, we actually calculate 

B 
n 

X 
u 

$ .. + , + + + -  

0.1 
1 2 3 4 5 6 7 8  

T 
I 

Figure 1. A plot of the average susceptibility against temperature for sizes between L = 4 and 
L = 64 using the a approximation with h, = 1 and the nearest-neighbour interaction given by 
Ji , j  = 1. 

3.5,  

Figure 2. A plot of R ( L )  
the cs approximation. 

[ x ( z L ,  T) lav / [x(L,  T)Iav for various sizes and temperahlres using 

A word of caution is in place here conceming the numerical derivative at h = 0. We 
must choose h small enough so that [M(h) ] ,  is linear in h. The difficulty is that, below the 
transition, the size of the region shrinks to zero when the size of the system tends to infinity, 
but for h too small we encounter numerical problems from round off errors. Fortunately, 
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Figure 3. Scaling plot for the average susceptilibily, 85 discussed in the text. for the CS 
approximation. The exponent values are 0 = 0.53 and Y = 1.36, and the @amition tempenlw 
is taken to be T, = 3.85. 

!- 4 

U 
4 6 810 20 40 

L 
Figure 4. The average susceptibility as a function of L on a log-log plot for different 
temperatures for the MK approximation with h,lT = 0.5 and the nearest-neighbour interactions 
in the different directions given by Jx =2Jy = 45, with Ju = 1. 

we were able to meet both requirements, except possibly for the the data below TC for the 
largest size considered, L = 64 (see the comments below on figure 3). 

The susceptibility is presented in figure 1 for different sizes as a function of 
temperature. In the low-temperature regime we see that, excluding L = 4, the ratio 
R(L) c [ x ( Z L ,  T)],,/[x(L, T)], is almost temperature independent, as shown in figure 2. 
Furthermore. for large L, R also becomes almost L independent, which implies that [xlaV 
varies with a power of L. Fitting to equation (8) we find q zz 0.53 with about 10% accuracy, 
which is close to the value q = 0.5 expected at a first-order transition, see equation (11). 
To obtain the other critical exponents we use the finite-size scaling form 

[x(L, T)], = Lz-'f(L''"(T - Tc)) (1% 
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l o  4 6 810 20 40 
L 

Figure 5. The mean square susceptibility as a function of L on a log-log plot for diffknt 
temperatuw for the MK approximation. 

104 

100 

10 

Figure 6. The disconnected susceptibility as a function of L on a log-log plot for different 
temperatures for the MK appkximation ~ . 

where U is the exponent which describes the divergence of the correlation length with 
temperature. The susceptibility exponent, y is then given by ‘y = (2 - q)u. We guess a 
value for y ;  set v = 0.53, and determine U from U = y / (2  - v) .  Next we estimate the 
best Tc for this y by requiring that the data for the susceptibility of the largest systems a 
little above T, (where finite-size effects should be unimportant) are of the form (T --Te)-Y. 
With these parameter values, we plot [x(L, T ) ] , , / L ~ - ~  as a function of L””(T -z). This 
procedure is repeated for several values of y until we get the best data~collapse. Using the 
sizes L = 16, 32 and 64 we found that the best fit is obtained for y = 1.9-2.2. Within 
that range it is impossible to prefer one value over another. The fit for y = 2 is shown in 
figure 3. The results for the L = 64 system are a little low at low temperatures, probably 
because &e value of h used for the numerical differentiation was too big (see the comments 
above on difficulties in choosing the right value of h). However, the critical exponents are 
determined from the data-above T,, where the different graphs coincide. 
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~. 
2.5 3 '3.5 ~ 4 4.5 5 

T 

Figure 7. The ratio. An. as defined in the texf for various sizes. L 
approximation. The curves a E  expected to inlenect at 7,. 

P+'. for the MK 

We can also estimate the specific heat exponent, a,  from the scaling law a+2fi+ y = 2 
where fi  is the order parameter exponent In the next section we find that fi  _N 0, consistent 
with results of Ogielski 1121, so, using the above value of y ,  one finds that a is very small, 
or even negative. As a self-consistency check, we have also calculated the average energy 
associated with the random field (in the absence of an external uniform field). This is done 
by the same decimation procedure as before. The difference is that instead of calculating 
the space average of (Si) over the spins in the L = 2 lattice, we calculate &F = x h i ( S ; )  
summed over those spins. Note that h; is the original field, since the renormalization scheme 
is just a way of calculating the thermal average of the spin (Si). We expect that the part of 
the energy associated with the random field scales in the same way as the total energy. The 
temperature derivative of &F is very noisy but shows no tendency to diverge at T,. This is 
consistent with the above estimate for a obtained from scaling laws, and, given the noise 
in the data, it may also be consistent with the experimental result [13] showing a weak 
logarithmic divergence, a = 0. 

4. Migdal-Kadanoff approximation 

We now discuss our second approximation, due to Migdal and Kadanoff (MK). This is a very 
simple method, which has, nonetheless, been quite successful when applied to frustrated 
systems. For example, the MK method was the first to give the (apparently correct) result that 
there is a transition in the three-dimensional Ising spin glass but not in the two-dimensional 
spin glass [14,15]. The repeated MK transformation enables us to keep track of the spin- 
independent term in the Hamiltonian at each stage, so we can compute a e  free energy 
and hence its derivatives such as the magnetization and the susceptibility. Since the spin- 
independent term is evaluated analytically we can evaluate x directly at h = 0, where h is 
a uniform field, without needing to take a finite difference of the magnetization at two field 
values, as was necessary for the cs approximation in the previous section. 

The MK method has been extensively discussed elsewhere [9, IO] so we will not go into 
details here. Basically one moves bonds around so that the trace can be done over spins 
which are connected to only two neighbours. We use a scale factor of b = 2 so that the 
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size of the lattice is reduced by a factor of 2 each time. The method does not mix the 
bonds in the different directions and, in fact, treats the bonds in the x ,  y and z directions 
inequivalently. As a result, the pure system (i.e. without random fields) has different fixed- 
point equations for the x ,  y and t bonds. In order that one obtains a fixed point at the 
same temperature for the bonds in each direction, one must choose the bonds in different 
directions to have different values in the original Hamiltonian, namely Jx =.2Jy = 44. 

For the pure system, this ratio is maintained by the transformation. We also adopt this 
choice of bonds in the initial Hamiltonian for the random field case, and work in units where 
J y  = 1. In this section the ratio h,/T is kept constant, which corresponds to working on 
a line at a fixed angle through the origin in the h-T plane. We use the value h,/T = 0.5. 
Note that in the previous section, it was h,/J (with J = 1 )  that was kept constant. 

In applying the bond-moving MK scheme to systems with fields one also needs to decide 
how much of the field on a site is moved, if a bond attached to that site is moved. In order to 
recover the correct low-temperature behaviour, it is necessary to associate an equal fraction 
of the field with each of the bonds from the site, and move that part of the field along with 
the bond [16]. 

In tigures 46 results for [XI,,, [xzIav and [Xdislav are shown plotted against L on a 
double logarithmic scale for different temperatures. At high temperatures, there is curvature. 
in the data indicating that the results will saturatefor larger sizes. For temperatures at and 
below about 4.2, we see power-law behaviour, with an exponent which does not change 
significantly at lower temperatures. It is therefore difficult to distinguish the low-temperature 
region from the critical region. 

We attempted to determine the location of the critical point by looking at how K. = 
([h~l , ) ' / z /J  varies with n, the number of iterations. Here J = (0,5[J.] + [JyI +2[3,1)/3, 
where [J,] is the average value of the nearest-neighbour interaction in the x direction, 
averaged over both sites and field configurations. We calculated this ratio, both for the 
original Hamiltonian on a lattice of size L and in the lattice rescaled down to a linear size 
of 2. Dividing the latter quantity by the former, we get A, KJK, for a number of 
iterations equal to n = logz(L) - 1.  In the disordered phase, the effective coupling Aa goes 
?o zero with increasing n, while at the critical point, the coupling goes to a fixed point value, 
so A. becomes independent of n. In the ordered phase, An is expected to diverge. Hence 
the critical point can be located by looking for the intersection of cuGes of A against T for 
different sizes. We plot this ratio in figure 7. Unfortunately, the C U N ~ S  do not intersect at a 
single point: rather the'intersection of neighbouring,values of n occurs at somewhat higher 
temperatures as n increases. Presumably one would need to do larger sizes to determine T, 
precisely. However, from figure 7 it appears  that Tc cannot be much less than about 4.2 
and, from the data for in figures 4-6, Tc cannot be much greater than this since the data start 
to show curvature. Hence we estimate Tc Y 4.2. Our conclusions are not very sensitive to 
the precise value of T,. 

From the slopes, of the curves for [xIw and [Xdisliv at T = 4.2 we find r~ = 0.56 and 
ij = 1.0. As a consistency check on the droplet picture we use equation (9) to determine the 
expected exponent for~[,yzIav obtaining 4.44. The actual value, obtained from figure 5, is 
4.43; which is in excellent agreement. This shows that the RSRG approximation confirms the 
droplet picture. Note that i j  = 1.0 gives ,9 = 0, using the scaling law ,9 = (d - 4 + ij)u/2. 
The best estimate for ,3 so far is probably that of Ogielski [12], who found ,3 m 0.1, which 
is also close to zero. 

Histograms of the values of x at T = 4.2 for L = 32 and 16 are shown in figures 8 
and 9. The results show the expected behaviour of a peak at rather small vslues of x and a 
long tail (notice the horizontal scakis  logarithmic), extending to much larger values. The 
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Figure 8. Histogram of the susceptibilities of lOOlM samples for L = 32, T = 4.2 for the MK 
approximation. Note the long rail in the disuibution 

Figure 9. Histogram of the susceptibilities of 10000 samples for L = 16, T = 4.2 for the MK 
approximation. Note the long rail in the dishibulion. 

the tail is seen to be longer for the larger size, as expected. 
From our results we are unable to detect, within the accuracy of the data and the 

limitations of the finite sizes, any difference between the exponents at and below Tc. This 
indicates that the transition is close to first order as discussed in section 2. 

5. Conclusions 

We have applied two RSRG approximations to study the susceptibility of the random field 
king model. We find that there are large sample-to-sample fluctuations of the form predicted 
by the droplet model. The exponents describing these fluctuations at and below Tc are 
indistinguishable within the accuracy of the calculation, which suggests that the msi t ion 
is close to first order. 
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